
Summary, global statistics

Report sections

Navigation by issues

Source code annotation

Navigation by loops

Issue details

Context sensitive help

2. Slowspotter Demo

SlowSpotter™

/* Unoptimized Array Multiplication: x = y * z N = 1024 */
for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 {r = 0;

 for (k = 0; k < N; k = k + 1)

 r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 }

/* Unoptimized Array Multiplication: x = y * z N = 1024 */

for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 {r = 0;

 for (k = 0; k < N; k = k + 1)

 r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 }

Any Compiler

Binary

n Sampler
Finger
Print

(~4MB)

Host System

Source:
C, C++, Fortran, OpenMP…

Mission:
Find the SlowSpots™
Asses their importance
Enable for non-experts to fix them
Improve the productivity of performance experts

Mission:
Find the SlowSpots™
Asses their importance
Enable for non-experts to fix them
Improve the productivity of performance experts

/* Unoptimized Array Multiplication: x = y * z N = 1024 */
for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 {r = 0;

 for (k = 0; k < N; k = k + 1)

 r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 }

/* Unoptimized Array Multiplication: x = y * z N = 1024 */

for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 {r = 0;

 for (k = 0; k < N; k = k + 1)

 r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 }

SlowSpotter

Any Compiler

Binary

n Sampler
Finger
Print

(~4MB)

Host System

Source:
C, C++, Fortran...

How?

What?
Where?

n Analysis

Target System
Parameters

n Advice

A One-Click Report Generation

(Limit, if you like, data gathered
here, e.g., start gathering after
after 10 sec. and stop after 10
sec.)

Input arguments

Application to
run

Working dir (where to run the app)

Cache size of the target system
for optimization (e.g., L1 or L2
size)

Fill in the following fields:

Click this button
to create a report

Predicted fetch rate
(if utilization à 100%)

Cache size

Miss rate

Fetch rate Cache utilization ≈ Fraction of cache data
utilized

Cache size to optimize for

List of bad loops

Spotting the crime

Explaining what to do

Loop Focus Tab

List of Bandwidth SlowSpots

Bandwidth Focus Tab

Spotting the crime

Explaining what to do

Resource Sharing Example

16

Libquantum
A quantum computer simulation
Widely used in research (download from: http://www.libquantum.de/)
4000+ lines of C, fairly complex code.
Runs an experiment in ~30 min

Throughput improvement:

0

0,5

1

1,5

2

1 2 3 4
Number of Cores Used

R
el

at
iv

e
Th

ro
ug

hp
ut

Edit-compile-analysis cycle ≈ 1min

Demo

Demo Time!

Libquantum:
Orig code
Spatial opt
Spat + Loop fusion

Utilization Analysis

SlowSpotter’s First Advice: Improve Utilization
èChange one data structure

–  Involves ~20 lines of code
–  Takes a non-expert 30 min

Libquantum

Predicted fetch rate
if utilization = 100%

Fetch rate
Cache utilization ≈ Fraction of cache data
utilized

18

Original Code
data 0
status 0
data 1
status 1
data 2
status 2
data 3
status 3

Cache size

record

Only accessing status
data in main loop

Need 32 MB per thread!

1.3%

Utilization Analysis
Libquantum

19

Original Code
for (i=0; i++; i<MAX) {
 ... = huge_data[i].status + ...
 }

for (i=0; i++; i<MAX) {
 ... = huge_data_status[i] + ...
 }

Utilization Optimization

Predicted fetch rate
if utilization = 100%

Fetch rate

Cache size

Cache utilization ≈ Fraction of cache data
utilized

SlowSpotter’s First Advice: Improve Utilization
èChange one data structure

®  Involves ~20 lines of code
®  Takes a non-expert 30 min

After Utilization Optimization

Original Code Utilization Optimization

Libquantum

Predicted fetch rate ≈ New fetch rate

Old fetch rate
Cache Utilization ≈
95%

Cache size

Utilization Optimization

Original Code Utilization Optimization

Predicted fetch rate ≈ New fetch rate

Old fetch rate

21

Cache Utilization ≈
95%

Cache size

1

2

Two positive effects from better utilization
1.  Each fetch brings in more useful data à lower fetch rate
2.  The same amount of useful data can fit in a smaller cache à shift left

Utilization Optimization

Reuse Analysis

Second-Fifth SlowSpotter Advice: Improve reuse of data
èFuse functions traversing the same data

–  Here: four fused functions created
–  Takes a non-expert < 2h

Libquantum

Fetch rate

22

...
toffoli(huge_data, ...)
cnot(huge_data, ...
...

...
fused_toffoli_cnot(huge_data,...)
...

Utilization + Fusion Optimization

Effect: Reuse Optimization

•  The miss in the second loop goes away
•  Still need the same amount of cache to fit “all data”

SPEC CPU2006-462.libquantum

Old fetch rate

23

Utilization + Fusion Optimization
New fetch rate

Utilization Optimization

1

Utilization + Reuse Optimization

•  Fetch rate down to 1.3% for 2MB
•  Same as a 32 MB cache originally

Libquantum

Old fetch rate

24

Utilization + Fusion Optimization
New fetch rate

Utilization Optimization

Summary

25

Libquantu
m

0

1

2

3

4

5

1 2 3 4

Cores Used

Th
ro

ug
hp

ut

Original
Utilization Optimization
Utilization + Fusion

2.7x

Report – front page

Summary, global statistics

Report sections

Navigation by issues

Source code annotation

Navigation by loops

Issue details

Context sensitive help

EXAMPLE
libquantum

Motivating example

Libquantum
A quantum computer simulation
Widely used in research (download: http://www.libquantum.de/)
4000+ lines of C, fairly complex code.
Runs an experiment in ~30 min

Poor scalability

0

0.5

1

1.5

2

1 2 3 4

R
el

at
iv

e
Th

ro
ug

hp
ut

Number of Cores Used

Live demo

Original program

After spatial optimization

After temporal optimization

Result

Libquantum

0

1

2

3

4

5

1 2 3 4

Th
ro

ug
hp

ut

Cores Used

Original

Utilization Optimization

Utilization + Fusion

2.7x

INSTALL SOFTWARE,
BOOT FROM DVD

then:

Agenda

•  Installation of software

•  Individual work with tutorial
–  5 Labs,

•  Self study; then
•  we will go through answers and have a short discussion for each lab

•  Presentation of two advanced optimization examples
–  Blocking
–  False sharing

TUTORIAL

General Workflow

•  Avoid CPU stalls (“cache misses”)
–  Identify irregular accesses
–  Where is the hardware prefetcher ineffective
–  Convert to consecutive, streaming accesses
–  Hide tricky latencies using prefetches

•  Make better use of cache space
–  Spatial locality
–  Separate read only fields and read/write fields

•  Improve scalability
–  Long term data reuse

General Workflow (continued)

•  Inefficient use of shared memory in multithreaded programs:
–  False sharing
–  Poor communication efficiency

(few bytes transferred per cache line downgrade)

•  Avoiding cache pollution (depending on architecture):
–  Write combining, a.k.a streaming stores
–  Non-temporal prefetching

•  Other things:
–  TLB pressure, Cache conflicts.

Example

•  Application performs repeated lookups in a table
•  Each record consists of several fields:

•  Different queries:
–  Count cars with certain color
–  Count cars with certain model and minimum weight

Color Model Weight
Pointer	to		
Registration	
number

Engine	Power

String	(registration	number)

Example code versions

•  Linked list
•  Linked list with prefetch hints
•  Vector
•  Several vectors
•  Blocked (a.k.a Tiled)

Baseline code
class database_1_linked_list_t : public single_question_database_t {
public:
 virtual void ask_one_question(query_t &query) const;
private:
 typedef std::list<car_t> cars_t;
 cars_t cars;
};

void database_1_linked_list_t::ask_one_question(query_t &query) const
{
 cars_t::const_iterator i = cars.begin(), e = cars.end();
 for (; i != e; i++) {
 switch (query.query_type) {
 case 0: // count matching colors
 if (i->color == query.car.color)
 query.result++;
 break;

 case 1: // count same model but heavier than minimum weight
 if (i->model == query.car.model &&
 i->weight > query.car.weight)
 query.result++;

 break;
 }

 }
}

Linked list

Traverse entire list

Two variants of
Record access

For each query

Linked list (doubly linked, std::list)

A linked list is the worst possible scenario.

Color Model Weight
Pointer	to		
Registration	
number

Engine	Power

String	(registration	number)

Color Model Weight
Pointer	to		
Registration	
number

Engine	Power

String	(registration	number)

13.6 s

6.6 s

Prefetch Improvements

Hide traversal latencies by prefetching, slightly in advance.

hea
d

struct record {
 car data;
 record *next;
 record *prefetch_hint;
};

for (record *i = head; i != NULL; i = i-
>next) {
 __builtin_prefetch(i->prefetch_hint); //
gcc
 // rest of code ...
}

Arrange data consecutively in memory

•  Use custom memory allocators to control dynamic memory
layout
–  (for instance to keep linked list nodes adjacent in memory)

•  Or use data structures that guarantee consecutive storage
–  Plain old vectors
–  std::vector
–  std::deque

Improvements: packing

Place data consecutively, i.e. array, vector

0.88 s

Color Model Weight
Pointer	to		
Registration	
number

Engine	Power

String	(registration	number)

Color Model Weight
Pointer	to		
Registration	
number

Engine	Power

String	(registration	number)

Color Model Weight
Pointer	to		
Registration	
number

Engine	Power

String	(registration	number)

One	Record	

Improvements: packing

Store often used fields together; move less used fields elsewhere.

0.45 s

Color

Model

Weight

Other	fields,
(never	fetched	
in	this	context)

One	logical	record,	split	
up	over	several	vectors

Improve long term reuse

Blocking means batching and subdividing data to fit in cache.

Color

Model

Weight

Other	fields,
(never	fetched	
in	this	context)

Sub	range	of	the	
database;	A	block	of	
records

Query QueryQuery Query Query...

Available	queries

Query	queue

Pr
oc
es
s	a

ll	
qu

er
ie
s

sim
ul
ta
ne

ou
sly

0.34 s

Summary example timings

●  Linked list: 13.6 s

●  Linked list w/ prefetch 6.6 s

●  Vector 0.88 s

●  Several vectors 0.45 s

●  Blocking 0.34 s

Multithreaded app, scaling properties

# cores:	 1	 2	 3	 4	 5	 6	 7	 8	
1 – Linked list	 ≡ 1	 1.8	 2.4	 2.8	 3.1	 3.5	 3.5	 3.7	
2 – Prefetched linked list	 2.2	 3.5	 4.4	 3.8	 4.5	 5.1	 5.4	 5.9	
3 – Vector	 14	 22	 19	 15	 18	 20	 22	 25	
4 – Several vectors	 34	 63	 72	 71	 73	 85	 93	 98	
5 – Blocked	 46	 89	 138	 185	 232	 277	 293	 309	

EXAMPLE (BLOCKING)
Gaussian Elimination with pivoting
(Forward elimination step)

Overview of the forward elimination step

for i=1 to n-1
 find pivotPos in column i
 if pivotPos ≠ i
 exchange rows(pivotPos,i)
 end if

 for j=i+1 to n
 A(i,j) = A(i,j)/A(i,i)
 end for j

 for j=i+1 to n+1
 for k=i+1 to n
 A(k,j)=A(k,j)-A(k,i)×A(i,j)
 end for k
 end for j
end for i

!$omp parallel do private (i ,j)

First approach speed up

nThreads
0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

Speed up w.r.t. sequential version

First approach speed up

What went wrong?

•  For each prepared pivot, the whole matrix is accessed. The
algorithm requires pivots to be calculated in order.

•  Repeated eviction of the matrix’ cache lines.

•  Observation: Each column is an accumulation of eliminations
using previous columns!

•  Temporal Blocking Advice says:
–  Use each column many times before it gets evicted.

•  How? To use each column more times means we have to:

Ø Arrange code to make more pivots available!

Blocking GE

for k=1 to n-1, step C
 BlockEnd=min(k+C-1,n)
 GE on A(k:n,k:BlockEnd) &
 Store C pivots’ positions
 
 for each column j after BlockEnd
 for i=k to BlockEnd

 swap using pivots(i)
 elimination i on j
 end for i
 end for each j
End for k

Pivots array

The row exchange turned into a
two- element swap before column
elimination. We need this auxiliary

storage for the original pivot
location.

C Rest of columns C Rest of columns

!$omp parallel do private (i ,j)

1

2

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12

Sp for blocked GE, C=10 Sp for original GE

Speed-up relative to the sequential time

nThreads

6.2
x

Selecting a Good Blocking Size

0

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sp
ee

du
p

Block size

N=3000

N=4000

EXAMPLE (FALSE SHARING)
N-Body

Simulation of Gravitational N-body problem

•  Initialize bodies
•  for time= start to end step by Δt

–  Calculate forces
–  Move bodies

•  end for time
for each body i=1 to n-1
 for each neighbour j=i+1 to n
 calculate:

 end for j
end for i

()

ijj

iji

ij

ji

ij

ji
ij

jiij

ff

ff

r
pp

r
mGm

f

ppr

!

!

!

=−

=+

−
=

−=

2

for each body i=1 to n

end for each

tmfvd ii Δ×= /
!!

tvdvpd i Δ×+=)2/(!!!

vdvi
!!

=+

pdpi
!!

=+

0
!!

=if
fij

-fij

vi

vj

Algorithm

for	(&me=start	to	end,	step	dt)	
{	
					for(i=0	to	n-1,	step	1)	
													for(j=i+1	to	n-1,	step	1)	

						CalculateForce(bodyArr[i],	bodyArr[j]);	
																					
							for(i=0	to	n-1,	step	1)	
													Move(bodyArr[i]);	
}	

typedef struct
{
 double px,py;
 double vx,vy;
 double fx,fy;
 double m;
} body;

#pragma omp atomic
 force updates

#pragma omp parallel private(i,j)

#pragma omp for

#pragma omp for

Speed up or slow down?!

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12

Original

Cache coherence

Cache 1

Cache 2

Cache 3

Exclusive Shared Modified Invalid

Read data in
the cache

line

write data in
the cache

line

Read data in
the cache

line Read data in
the cache

line

Write the
cache line to

memory

write data in
the cache

line

Communication overheads in force calculations

•  Symmetric updates to the ’force’ vector causing false sharing:
–  Fighting over ownership of the corresponding cachelines.
–  Negative side-effect: No fast access to read-only variable ’position’.

•  Low write-back utilization:
–  Dirty cache lines are written back to memory before re-updating force

fields.

•  Expected communication overheads due to atomic updates.

Communication overheads in force calculations

Body i Body j

Read ,
...
Read ,
...
Update
...
Update

jp
!

ip
!

jmim

iF
!

jF
!

CalculateForces

Body i Body j

Read ,
...
Read ,
...
Update
...
Update

jp
!

ip
!

jmim

iF
!

jF
!

CalculateForces

Body j Body i

Read ,
...
Read ,
...
Update
...
Update

jp
!

ip
!

jmim

iF
!

jF
!

CalculateForces

Body 1 Body 4 Body X Body 7 BodyArray

Invalid Invalid Invalid Invalid Invalid Invalid

typedef struct
{

} bodyForce;

Avoid false sharing!

typedef struct
{
 double px,py;
 double vx,vy;

 double m;
} body;

 double fx,fy;

Avoid atomic
updates using thread
private force arrays!

force array

Modified algorithm

{	
			id=omp_get_thread_num();	
			for	(Dme=start	to	end,	step	dt)	
				{							forceArr[id,	0	to	n-1]	=	0	
												for	(i=id	to	n-1,	step	nThreads)						//Explicit	scheduling,	open	for	smarter	load	balancing?	

	for	(j=i+1	to	n-1,	step	1)	
				CalculateForce	(bodyArr[i],	bodyArr[j],	forceArr[id,i],	forceArr[id,j]);	

				
												for	(i=id	to	n-1,	step	nThreads)							//move	objects	
																					SumForcesAndMove	(bodyArr[i],	forceArr,	i,	nThr,	n);	
	
					}	
}	

#pragma omp parallel private(i, j, id)

#pragma omp barrier

#pragma omp barrier

bodyForce f = sum forceArr[0 to nThreads-1, i]
Move bodyArr[i] using f

Overall performance

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

Original Modified

8x

SUMMARY

Summary

•  ParaTools ThreadSpotter is a tool for working with performance
for serial and multi-threaded programs.

•  Large performance benefits in paying attention to architecture.

•  Exploit locality, by making sure that data memory layout and
data traversal patterns agree and are linear.

•  Conserve memory bandwidth, cache space and avoid coherency
traffic.

ParaTools ThreadSpotter - Report

74

Summary

75

Metrics as a function of cache size

•  Fetch ratio
–  The likelihood that a memory

access causes memory bus traffic
•  Miss ratio

–  The likelihood that a memory
access doesn’t find requested data
in the cache

•  Fetch utilization
–  How much of every fetched cache

line that the application really uses

76

Issues by Severity

77

Statistics of an Issue

78

Reference to Source Code

79

Used Icons

Slowspot Issues Opportunity issues
 Fetch utilization
 Write back utilization
 Communication utilization
 Inefficient loop nesting
 Random access
 Prefetch: too close
 Prefetch: too distant
 Prefetch: unnecessary
 False sharing

 Spatial blocking
 Temporal blocking
 Spat/temp blocking
 Loop fusion
 Non-temporal data
 Non-temporal store possible
 Fetch hot-spot
 Write-back hot-spot
 Communication hot-spot

80

Resource Sharing Example

81

Libquantum
A quantum computer simulation
Widely used in research (download from: http://www.libquantum.de/)
4000+ lines of C, fairly complex code.
Runs an experiment in ~30 min

Throughput improvement:

0

0,5

1

1,5

2

1 2 3 4
Number of Cores Used

R
el

at
iv

e
Th

ro
ug

hp
ut

81

Edit-compile-analysis cycle ≈ 1min

Demo

Libquantum:
Orig code
Spatial opt
Spat + Loop fusion

82

Utilization Analysis
Libquantum

Predicted fetch rate
if utilization = 100%

Fetch rate
Cache utilization ≈ Fraction of cache data utilized

83

Original Code
data 0
status 0
data 1
status 1
data 2
status 2
data 3
status 3

Cache size

record

Only accessing status
data in main loop

Need 32 MB per thread!

1.3%

83

Utilization Analysis
Libquantum

84

Original Code
for (i=0; i++; i<MAX) {
 ... = huge_data[i].status + ...
 }

for (i=0; i++; i<MAX) {
 ... = huge_data_status[i] + ...
 }

Utilization Optimization

Predicted fetch rate
if utilization = 100%

Fetch rate

Cache size

Cache utilization ≈ Fraction of cache data utilized

ParaTools ThreadSpotter’s First Advice: Improve Utilization
èChange one data structure

®  Involves ~20 lines of code
®  Takes a non-expert 30 min

84

Utilization Optimization

Original Code Utilization Optimization

Predicted fetch rate ≈ New fetch rate

Old fetch rate

85

Cache Utilization ≈ 95%

Cache size

1

2

Two positive effects from better utilization
1.  Each fetch brings in more useful data à lower fetch rate
2.  The same amount of useful data can fit in a smaller cache à shift left

85

Utilization Optimization

Loop Fusion

Second-Fifth ParaTools ThreadSpotter Advice: Improve reuse of data
through loop fusion

èFuse functions traversing the same data
–  Here: four fused functions created
–  Takes a non-expert < 2h

Libquantum

Fetch rate

86

...
toffoli(huge_data, ...)
cnot(huge_data, ...
...

...
fused_toffoli_cnot(huge_data,...)
...

Utilization + Fusion Optimization

86

Effect: Loop Fusion

•  The miss in the second loop goes away
•  Still need the same amount of cache to fit “all data”

SPEC CPU2006-462.libquantum

Old fetch rate

87

Utilization + Fusion Optimization
New fetch rate

Utilization Optimization

1

87

Utilization + Loop Fusion

•  Fetch rate down to 1.3% for 2MB
•  Same as a 32 MB cache originally

Libquantum

Old fetch rate

88

Utilization + Loop Fusion
New fetch rate

Utilization Optimization

88

Summary

89

Libquantum

0

1

2

3

4

5

1 2 3 4

Cores Used

Th
ro

ug
hp

ut

Original
Utilization Optimization
Utilization + Fusion

2.7x

89

Another Demo – N-body

90

Simulation of Gravitational N-body Problem

•  Initialize bodies
•  for time = start to end step by Δt

–  calculate forces
–  move bodies

•  end for time

91

for each body i=1 to n-1
 for each neighbour j=i+1 to n
 calculate

 end for j
end for i

ijf
!

iji ff
!!

=+

ijj ff
!!

=−

for each body i=1 to n

end for each

tmfvd ii Δ×= /
!!

tvdvpd i Δ×+=)2/(!!!

vdvi
!!

=+

pdpi
!!

=+

0
!!

=if
fij

-fij

vi

vj

Algorithm

92

for (time=start to end, step dt)

{
 for(i=0 to n, step 1)

 for(j=i+1 to n, step 1)

 CalculateForce(bodyArr[i], bodyArr[j]);

 for(i=0 to n, step 1)
 Move(bodyArr[i]);

}

#pragma omp parallel private(i,j)
#pragma omp for

#pragma omp for

Speed Up or Slow Down?

93

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12

Original

Cache Coherence

94

Cache 1

Cache 2

Cache 3

Exclusive Shared Modified Invalid

Read data in
the cache line

write data in
the cache line

Read data in
the cache line

Read data in
the cache line

Write the
cache line to

memory

write data in
the cache line

Communication Overheads in Force Calculations

•  Symmetric updates to the ’force’ vector causing false sharing:
–  Fighting over ownership of the corresponding cachelines.
–  Negative side-effect: No fast access to read-only variable ’position’.

•  Low write-back utilization:
–  Dirty cache lines are written back to memory before re-updating force

fields.

•  Expected communication overheads due to atomic updates.

95

Communication Overheads in Force Calculations

96

Body i Body j

Read ,
...
Read ,
...
Update
...
Update

jp
!

ip
!

jmim

iF
!

jF
!

CalculateForces

Body i Body j

Read ,
...
Read ,
...
Update
...
Update

jp
!

ip
!

jmim

iF
!

jF
!

CalculateForces

Body j Body i

Read ,
...
Read ,
...
Update
...
Update

jp
!

ip
!

jmim

iF
!

jF
!

CalculateForces

Body 1 Body 4 Body X Body 7 BodyArray

Invalid Invalid Invalid Invalid Invalid Invalid

Avoid False Sharing

97

typedef struct
{

} bodyForce;

typedef struct
{
 double px,py;
 double vx,vy;

 double m;
} body;

 double fx,fy;

Avoid atomic
updates using
thread private
force buffer!

Modified Algorithm

98

{
 id=omp_get_thread_num();

 for (time=start to end, step dt)

 { forceArr[id, 0 to n] = 0

 for (i=id to n, step nThreads) //Now able to scatter for load balancing

 for (j=i+1 to n, step 1)

 CalculateForce (bodyArr[i], bodyArr[j], forceArr[id,i], forceArr[id,j]);

 for (i=id to n, step nThreads) //move objects

 SumForcesAndMove (bodyArr[i], forceArr, i, nThr, n);

 }

}

#pragma omp parallel private(i, j, id)

#pragma omp barrier

#pragma omp barrier

bodyForce f = sum forceArr[0 to nThreads, i]
Move bodyArr[i] using f

Overall Performance

99

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

Original Modified

8x

